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1 Introduction

Factoring large composite integers is a textbook example of a computational prob-
lem that is hard to solve on a classical computer, the best known algorithms run
in super-polynomial time. It is an immensely important problem since the RSA
cryptosystem and therefore much of the information security of the modern world
relies on its hardness.

Variational quantum factoring (VQF) is a proposed variational approach to in-
teger factoring [1]. It works by encoding the factoring problem to the ground state
of an Ising Hamiltonian, which is then solved with a variational quantum opti-
mizer. Here, we study the quantum resource requirements of VQF with different
assumptions and compare factoring performance for entangled and non-entangled
variational circuits.

2 Variational quantum algorithms

Variational quantum algorithms (VQAs) are the most promising approach
to achieving practical quantum advantage using near-term NISQ computers.
They circumvent gate count limitations of near-term devices by using short
parametrized quantum circuits (PQCs). These PQCs are executed on the quantum
processor but their parameters are optimized using a classical computer. VQAs
can be seen as a quantum analogue of classical machine learning methods, such
as neural networks.

There have been many proposed applications for VQAs, such as finding
ground/excited states, simulation of quantum dynamics, combinatorial optimiza-
tion, solving systems of equations, and machine learning algorithms.

3 Variational quantum factoring

Consider factoring m = p · q where p and q are assumed to be prime. In a binary
representation, mnm−1 . . .m1m0 = pnp−1 . . . p1p0 × qnq−1 . . . q1q0. This equation im-
plies a system of equations over the unknown binary variables {p i} and {q i}. The
equations are

Ci =
i∑

j=0
q j p i− j +

i∑
j=0

z j,i −m i −
nc∑
j=1

2 jzi,i+ j , i = 0, . . . ,nc , (1)

where zi, j are the carry bits originating from the binary multiplication. These
equations are quantized to a Hamiltonian by the replacement

bk 7→ 1
2

(1−Zb,k) , (2)

where Z is the Pauli-Z operator, b = {p, q, z}, and k is the bit index. This produces a
Hamiltonian Ĥ =∑

i Ĉ2
i over qubits whose ground state (with zero energy) is in one-

to-one correspondence with bit assignments which satisfy m = p× q. Therefore,
factoring is reduced to the problem of finding the ground state of Ĥ. We will test
two variational quantum circuits:

|0〉 Ry Ry ∣∣ψ(θ)
〉|0〉 Ry Ry

|0〉 Ry Ry

|0〉 Ry T Ry ∣∣ψ(θ)
〉|0〉 Ry T Ry

|0〉 Ry T Ry

The first circuit is conventional entangled circuit with parametrized Pauli-Y ro-
tations. The second one is a circuit where the entangling operations are replaced
with T-gates. The purpose is to study whether entanglement in the ansatz ex-
hibits better performance than the non-entangled one, which could be simulated
efficiently on a classical computer. The circuits have a repeating layered structure
and the performance of VQF is controlled by changing the number of these layers.
More layers means a more flexible state

∣∣ψ(θ)
〉
, so finding the ground state is eas-

ier, but it also takes more time because there are more parameters to optimize.

4 Qubit requirements

The number of available qubits is an important bottleneck for NISQ devices. Fac-
toring larger numbers often require more qubits in the VQF algorithm so the qubit
number places a practical bound on the size of numbers to be factored. Typically
however, an additional simplification step is performed on (1), where “obvious”
equations are immediately solved. For example, one could deduce that xy = 1 is
equivalent to x = y = 1, which can eliminate some of the binary variables. In ad-
dition, in the original paper [1] the prior knowledge of np and nq was assumed,
which obviously is not possible in real factoring challenges.

We compared qubit requirements with and without prior knowledge of np and
nq. The qubit requirement scales in both cases linearly in logm. Prior knowledge
resulted in a 40% reduction in qubit requirements, on average. However, with
prior knowledge some instances are drastically simplified, sometimes even com-
pletely solved.

5 Energy optimization

We will now consider a simple gradient based variational quantum eigensolver
(VQE) method for finding the ground state of H. We simply use the quantum com-
puter to evaluate the energy E(θ)= 〈

ψ(θ)
∣∣H∣∣ψ(θ)

〉
and its gradients. The classical

part of the algorithm then adjusts the parameters θ so that E(θ) reaches a local
minimum. The optimization problem is non-convex, so we study the probability
of converging to the global minimum over uniformly random parameter initializa-
tions. Convergence to a suboptimal minimum can mean a failure to factor m.
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Figure 1: Left: The average final optimization energy of m = 91 for different num-
bers of layers L and entangled/non-entangled ansatz circuits with statistics over
100 random parameter initializations. This instance requires in total 10 qubits.
Error bars indicate the 5% and 95% quantiles over all runs. Right: Energy
achieved by QAOA on the same factorization instance for a few different num-
bers of layers.

We notice that VQE has better performance compared to QAOA, which is an
algorithm designed for combinatorial optimization used in previous VQF papers.
Also we note that entanglement in the VQE circuit seems to have little effect on
performance.

6 Conclusion

• Prior knowledge significantly reduces qubit requirements for VQF.

• VQE achieves better energies than QAOA while also using shorter circuits.

• There is no significant difference in optimization performance between entan-
gled and non-entangled variational circuits.

References

[1] E. R. Anschütz, J. Olson, A. Aspuru-Guzik, and Y. Cao QTOP@NetSys (2018)

Contact information for comments & improvement ideas: Arttu Pönni
Email: arttu.ponni@aalto.fi


